
CFG & PDA

Alex S.∗

1 Context Free Languages

Pal (language of palindromes) is context free.
Same as regular languages, only with recursion. Have no context.

1.1 Context Free Grammars

Grammar is a 4-tuple, (V,
∑

, S, P ), where V is a set of variables,
∑

is a set of terminals, S
is the starting variable (S ∈ V ), and P is a set of formulas of the form A → something,
where A is element of V , and something is element of (V ∪ ∑

)∗.
derivation trees, ambiguity

1.2 First & Follow

There are some relationships which are convinient to use when dealing with grammars:
First is the set of all terminals that can begin a sentential form derived from α:

First(α) = {a ∈ Vt|α ⇒∗ aβ}
⋃

(if α ⇒∗ λ then {λ} else ∅)

There’s also the follow set:

Follow(A) = {a ∈ Vt|S ⇒+ · · ·Aa · · ·}
⋃

(if S ⇒+ αA then {λ} else ∅)

1.3 Recursive Descent, LL(1)

There is a relatively simple parser type called recursive descent parser. These can parse
LL(1) grammars. These can look ahead one token to determine their next step.

The next few sections show how to take a grammar and attempt to transform it into an
LL(1) grammar. I say attempt, because not all grammars can be transformed into LL(1)
grammars. If you cannot transform a grammar into LL(1), usually one tries to change the
grammar slightly to make it compatible.

If you look at any early programming languages, nearly all of them use LL(1), or equiv-
alent, grammar.

∗alex@theparticle.com

1



1.3 Recursive Descent, LL(1) 1 CONTEXT FREE LANGUAGES

1.3.1 Common Prefixes

Because the parser needs to look a few (or one) tokens ahead to make a decision, grammar
productions that have a common prefix present a problem. For example, lets say we have a
production of:

<stmt> -> if <expr> then <stmt list> end if ;

<stmt> -> if <expr> then <stmt list> else <stmt list> end if ;

The above seems relatively sensible for any programming language to have. Unfortunately
just by looking at the first few tokens (like if), we cannot determine which production to
use.

We need to eliminate common prefixes by factoring them out of the grammar, and turn
the above if statements into something like:

<stmt> -> if <expr> then <stmt list> <if suffix>

<if suffix> -> end if ;

<if suffix> -> else <stmt list> end if ;

The general rule for this is: For all grammar productions with same LHS (Left Hand Side)
that have a common prefix,

S = {A → αβ, . . . , A → αζ}

In the above case, α is the common prefix. Create a new nonterminal N , and replace S with:

{A → αN, N → β, . . . , N → ζ}

1.3.2 Left Recursion

When constructing grammars, we often end up with grammars like (for mathematical ex-
pression):

E -> E + T

E -> T

T -> T * P

T -> P

P -> ID

The problem is that we cannot use this grammar for certain types of parsers, like LL(1).
In order to ‘fix’ it, we have to eliminate left recursion, by transforming the grammar into
something like this:

E -> T Etail

Etail -> + T Etail

Etail -> Lambda

2



1.4 Push-Down Automata 1 CONTEXT FREE LANGUAGES

T -> P Ttail

Ttail -> * P Ttail

Ttail -> Lambda

P -> ID

The general rule for this is: For all grammar production that have left recursion,

S = {A → Aα, A → β, . . . , A → ζ}

Create two new nonterminals, T and N , and replace set S with:

{A → NT, N → β, . . . , N → ζ, T → αT, T → λ}

getting rid of lambdas

1.4 Push-Down Automata

PDA is a 7-tuple, (Q,
∑

, Γ, q0, Z0, A, δ), where Q are states,
∑

is input alphabet, Γ is the
stack alphabet, q0 is the first state, Z0 is the initial stack symbol (element of Γ), A is a set
of accepting states (subset of Q), and δ : Q× (

∑∪{λ})× Γ (finite subsets of Q× Γ∗).
We move from “configuration” to configuration.
Configuration of PDA is current state, input string, and top of stack.

3


