
C / C++

Alex S.∗

1 C Language

C programming language was developed by Dennis Ritchie in the early 1970s (at AT&T Bell
Labs) for the Unix operating system. It’s an imperative programming language, meaning it
describes the computation in terms of states (variables), and statements that change that
state (statements that change variable values).

In 1983, ANSI formed a commitee to standardize C, and by 1989, the ANSI X3.159-1989
“Programming Language C” was born; also known as ANSI C. In 1990, the ANSI C was
also turned into an ISO standard.

1.1 Efficiency

C (and presently C++; although this was not always the case) language is generally known to
be the most efficient high level programming language. Some call it the ‘high level assembly
language’.

1.2 Types

In C language, one can convert from one type to another without much hassle. Pointers are
often implicitly turned into “int” values and vice versa.

One can almost always ‘typecast’ any variable to any other variable—which leads to
interesting issues related to aliasing.

1.3 Structures

The primary way of organizing data is to use Structures (more in class).

∗alex@theparticle.com

1



2 C++ LANGUAGE

2 C++ Language

C++ programming language was developed by Bjarne Stroustrup in 1983 (at AT&T Bell
Labs) as a better version of C. It was originally named “C with Classes”. It was designed
to be multi-paradigm language—support many different programming styles and constructs:
procedural programming, data abstraction, object oriented programming, generic program-
ming.

C++ became an ISO standard in 1998. Many aspects of the language changed around
that time—for example, namespaces were added, and made all the older C++ programs
break, unless they used:

using namespace std;

2.1 Efficiency

C++ is currently considered to have the same efficiency as C. Most of the computational
bits are “C language” anyway.

2.2 Types

C++ is statically typed (types are checked during compile type).

2.3 Classes

The primary way of organizing data is to use Classes. Classes are basically structures; that
can also have functions operating on that structure—creating what are known as ‘objects’.

2.4 Object Oriented Programming

Object Oriented Programming generally needs a few things:

2.4.1 Class

A class is a template (a structure) of the object. Basically a structure with functions (or
rather, methods) that operate on that structure.

2.4.2 Object

An object is an instance of a class.

2



2.5 Generic Programming 2 C++ LANGUAGE

2.4.3 Encapsulation

Encapsulation is data hiding. A function’s variables can only be accessed from that function,
etc. In OOP sense, this means that an object’s variables may be private. When someone
is working with an object, they only have to concern themselves with the Object’s public
interface.

2.4.4 Inheritence

Inheritence is the ability to extend the functionality of a certain class—and re-use its code.
For example, if our program needs to care about “Customer” and “Employee” objects—
maintain lists of both, etc., then we may find it easier to create an “Entity” class, and
inherit things from it.

Similarily, if we have an ArrayStack and a LinkedStack, we may find it convinient to
create a Stack class and inheric things from that.

2.4.5 Abstraction

The ability to work with a more general form of an object. When we want to work with a
Stack, we shouldn’t have to care if it’s an array based stack or a linked list based stack.

2.4.6 Polymorphism

Polymorphism is a complicated way of saying that different objects can behave/respond
differently to same events. For example,

obj.speak();

Will certainly produce a different result if the obj is an instance of, say a Cat, Dog, Person.

2.5 Generic Programming

Generic programming is achieved through the use of templates. For example:

template<class In, class Out> void copy(In from, In too_far, Out to){

while(from != too_far){

*to = *from;

++to;

++from;

}

}

The above basically copies a generic array, starting from variable from until we encounter
too_far. This could be an array of anything—integers, doubles, some objects, etc.

3


