
Intro to Error Correction

Alex S.∗

1 Introduction

Error correction is accomplished by adding some redundancy to the transmission, which
later (after transmission) lets us determine what the original message was (even if there
were errors).

Theoretically, we can make any noisy channel reliable. The question becomes how much
redundancy are we willing to add (and whether we can make such a decision before hand).
For example, if we know what error rate to except, we can add enough redundancy to account
for that error rate. If we don’t know what the error rate is (cannot establish an upper bound),
then whatever redundancy we add may not be enough.

1.1 Hamming Code (4,7)

For moderate error rates (and certain types of errors), we can define transformations that
add redundancy. For example, we can take every 4 bits of the input, and turn them into 7
bits of output, using a scheme like this:

0000 => 0000000 1000 => 1000101

0001 => 0001011 1001 => 1001110

0010 => 0010111 1010 => 1010010

0011 => 0011100 1011 => 1011001

0100 => 0100110 1100 => 1100011

0101 => 0101101 1101 => 1101000

0110 => 0110001 1110 => 1110100

0111 => 0111010 1111 => 1111111

So a sequence like this:

1000 1010 1011 1110 1001 0110

will become:

∗alex@theparticle.com

1



1.1 Hamming Code (4,7) 1 INTRODUCTION

1000101 1010010 1011001 1110100 1001110 0110001

How exactly does that benefit us? We have to send lots of extra bits, etc. Well, for one, if
we get the data that is one of the 7 bit patterns in the table, we know what was sent. For
example, if we get: 0011100, we know that it transforms back to 0011, but if we get:

0000011

we know there was some error (it’s not one of the patterns on the list). Can we use the
received data to ‘reconstruct’ the sent data?

To reconstruct the data, we need to calculate the ‘syndrome’ of the received sequence.
The syndrome is just a string representing the odd parity of some arrangement of the received
bits. For example, we label the received bits from r1 to r7:

r1 r2 r3 r4 r5 r6 r7

0 0 0 0 0 1 1

Then the syndrome is:

s1 = (r1 + r2 + r3 + r5) % 2;

s2 = (r2 + r3 + r4 + r6) % 2;

s3 = (r1 + r3 + r4 + r7) % 2;

Then, we flip a bit depending on what the syndrome is:

000 => don’t flip any bits.

001 => flip bit r7

010 => flip bit r6

011 => flip bit r4

100 => flip bit r5

101 => flip bit r1

110 => flip bit r2

111 => flip bit r3

So if we received 0000011, the syndrome would be:

s1 = (0 + 0 + 0 + 0) % 2 = 0

s2 = (0 + 0 + 0 + 1) % 2 = 1

s3 = (0 + 0 + 0 + 1) % 2 = 1

Since syndrome is 011, we flip bit r4 of 0000011 to get 0001011, which just happens to be
one of the patterns on the list, and nicely translates to: 0001.

2



1.2 Linear Codes 1 INTRODUCTION

1.2 Linear Codes

Hamming code is a linear code, and even though the above rules may seem kind of arbitrary,
they can all be modeled using relatively precise mathematical notation. For example, the
transformation is just a matrix multiplication (if you were implementing it, you would imple-
ment it as a table lookup). The decoding is also setup such that any single bit flip takes you
back to a ‘valid’ pattern—so you’re looking for the most likely bit flip (distance—number of
bit flips). Again, if you were implementing it, you’d implement it as a table lookup.

These codes can be quite a bit more complicated; the Hamming 4,7 code is just the
simplest for explanation.

3


