
The n-Tuple Method

Alex Sverdlov
alex@theparticle.com

1 Introduction

The n-Tuple method was first proposed by Bledsoe & Browning [BB59] as a mechanism to
recognize printed characters. It was later shown to also be capable of regression [KA96].

A modern day view of n-tuple method is a weightless neural network. In traditional neural
networks, the computational units are artificial neurons that perform an inner product of
inputs and weights, followed by a threshold function—essentially a linear discriminator.

In a weightless neural network the computational units are RAM (Random Access Mem-
ory) nodes, where the input is coded into an address, and output is decoded from the RAM
contents at that address. Because RAM nodes are essentially maps, they have the power
to learn and compute arbitrary functions. Training involves modifying the RAM contents,
unlike the traditional neural networks, where training updates the weights.

The n-tuple method is quick to train and operate—training can be accomplished via one
pass through the training data, and applying the classifier is just a table lookup followed by
aggregating.

The base n-tuple method is more powerful than linear models, as it is learning A to B
mapping (or an arbitrary function). It can also be setup to output relative probabilities, as
well as the category.

Before we get into the details of how n-tuple method works, there are a few preliminaries
that need to be mentioned: indexed relations & projections notation, and quantization.

1.1 Indexed Relations & Projections

An indexed relation is a tuple (I, R), where I is a sorted set of N integers, and R =
〈X0, X1, X2, . . .〉 is a list of N -tuples, such as Xi = (x1, . . . , xN). The index I acts as column
names for relation R

A projection πJ(I, R) = (J, S) defines a new indexed relation, where J ⊆ I and S is a list
of tuples of size |J |, having the corresponding values indexed by J . For example, an indexed
relation

({1, 2, 3}, 〈(a, b, c), (d, e, f), (g, h, i)〉)
has an index of {1, 2, 3}, and may be projected to a subspace {1, 3}

π{1,3}({1, 2, 3}, 〈(a, b, c), (d, e, f), (g, h, i)〉)

1

alex@theparticle.com

produces
({1, 3}, 〈(a, c), (d, f), (g, i)〉)

1.2 Quantization

At its core, quantization is a way of discretizing features. If a feature is a large integer, a
real number, a timestamp, or a date, quantization allows us to turn it into an integer value
in a certain range.

A quantizer is a function q(x) that takes a feature value (e.g. a real number) and produces
an integer output between 0 and L − 1, where L is the number of quantization levels for a
given feature.

This function q(x) can be trained from data samples: often setup such that each quan-
tization level has an equal probability of occurring. This is often accomplished by taking a
sample of the data, ordering it by the target feature, cutting the resulting list into L equally
sized slices, and using the boundary values of such cuts as quantization ranges that function
q(x) uses.

Let SL be a sorted list of all values for feature x. The quantization boundaries that split
x into L levels would be:

arrx = (SL(
N

L
), SL(2

N

L
), SL(3

N

L
), · · · , SL((L− 1)

N

L
))

The function qx(v) can then be defined as:

qx(v) = lower bound(v, arrx)

where lower bound does a binary search to return an index into arrx where value v is stored,
or in case v is not present, an index to the element immediately greater than v. This has the
effect that all v ≤ SL(N

L
) will get quantized to 0, all values that are SL(N

L
) < v ≤ SL(2N

L
)

will get quantized to 1, and so on.
Alternatively, to avoid run-time calculations, the value v may be bin-quantized, followed

by a lookup table.
Quantization can also be applied on tuples: given a tuple we want an integer value in 0

to Z − 1 range. For a tuple:
X = (x1, . . . , xN)

We define a quantizer qi for each feature xi, with Li levels. A quantized tuple Q(X) is then

t = (q1(x1), . . . , qN(xN))

Such quantized tuple is then fed into the address function addr(t) which produces a single
integer output given a tuple. It may be defined as:

N−1∑
i=0

mi ∗ xi

2

where

mi =
i∏

j=0

Lj

The values Li can be chosen to be proportional to the amount of entropy feature i has
as compared to other features. For example, we estimate entropy for each feature:

ei = −
∑

v∈V alues(xi)

piv ∗ log(piv)

Where piv is relative frequency (estimated probability) of value v for feature i. The estimate
of total entropy is then

E =
∑
i

ei

Each Li should get an appropriate fraction of levels out of Z levels:

Li = max(dZei/Ee, 2)

We need to clamp the quantization output to at least 2 levels; the minimum output of a
quantization is 1 bit. This leads to a potential overflow of Z, since it may turn out that:∏

i

Li > Z

This means Z needs to be chosen such that it is greater than 2N (at least 2 levels per feature).

1.3 n-Tuple Training

Let (I, R) be an indexed relation of quantized measurement tuples of Z components where

R = 〈X0, X1, X2, . . .〉

such as Xi = (x1, . . . , xZ). Let t(Xi) be the known correct target class for instance Xi and
t(Xi) ∈ C (the set of class labels). This is our training data.

We define (possibly randomly) M index sets, 〈J1, . . . , JM〉 where each Jm ⊂ I and |Jm| =
N . These M index sets are our projections for each class: these M “modules” will be trained
and operate independently from each other, and their results will be combined for the final
classification.

Initialize M tables, where each entry Tm,c has an integer counter for each target class.

Tm,c(addr(x)) = #{x|c = t(x)}, x ∈ πJm(I, R)

In other words, we build M look-up-tables from M random samples of features.

3

1.4 n-Tuple Classification

Let X = (x1, . . . , xZ) be the quantized measurement tuple we wish to classify. The classifi-
cation is just an aggregate of each of the M tables for each target class, followed by picking
the label that corresponds to the maximum aggregate:

c = argmax
c

∑
m

Tm,c(addr(πJm(I, 〈X〉)))

We could have additional logic to reserve a decision if c is not a clear winner (e.g. 2nd largest
aggregate is very close). This may be beneficial, as it allows the process to not output a
known ambiguous result.

1.5 Variations

There are several variations on the same theme. RAM networks often use a bit, instead of
a counter (the memory location is either activated or not—the final aggregate then counts
the proportion of modules that index an activated location) [AGF+09].

PLN, or probabilistic logic nodes are RAM nodes where the content of the memory indi-
cates a quantized probability with which the node should fire with a 1 [GVL96]. This allows
for semi-training by increasing/decreasing the probability conditional on output matching
desired target.

PLNs may be setup to have 3 content values: 0, 1, or d. If value is d then PLN returns
0 or 1 with equal probability. Otherwise the RAM contends of 0 or 1 are returned. Such
PLNs may be arranged in a pyramid.

The training mechanism for this multi-layered network is to produce an output, and if
it matches the target, then fix participating nodes that have a d with the actual value that
they generated. This has the effect of freezing that input/output mapping for that training
instance.

Bloom filters [Blo70] are a kind of n-tuple classifier. Instead of having content address the
RAM directly, Bloom filters pass the input through a sequence of hash functions, using the
output of the hash functions as an address into an array that is shared among all the hash
functions. The classifier then checks the location of each of the results of each hash function,
and if all the locations are populated, only then does a Bloom filter return a positive result.
This has the effect of eliminating all false negatives. Bloom filters are used to join large
datasets in distributed environments—only datasets that pass the filter are moved across
the network for joining: false positives are not an issue, false negatives would be.

References

[AGF+09] Igor Aleksander, Massimo De Gregorio, Felipe Maia Galvo Frana, Priscila
Machado Vieira Lima, and Helen Morton. A brief introduction to weightless
neural systems. In ESANN, 2009.

4

[BB59] W. W. Bledsoe and I. Browning. Pattern recognition and reading by machine.
In Papers Presented at the December 1-3, 1959, Eastern Joint IRE-AIEE-ACM
Computer Conference, IRE-AIEE-ACM ’59 (Eastern), pages 225–232, New York,
NY, USA, 1959. ACM.

[Blo70] Burton H. Bloom. Space/time trade-offs in hash coding with allowable errors.
Commun. ACM, 13(7):422–426, July 1970.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations (3rd Ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[KA96] Aleksander Kolcz and Nigel M. Allinson. N-tuple regression network. Neural
Networks, 9(5):855 – 869, 1996.

5

