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1 Bootstrapping

Bootstrapping is a technique that is used to calculate error bounds on a measurement.
Suppose we are conducting a field study of income levels, and ask N random people their

income (where N is generally small—talking to physical people is expensive).
We wish to publish the mean income level by region, but worried about reproducibility:

if another researcher did the same experiment (asking potentially different N random people
the same question), what are the chances they would end up with a similar mean?

One way to overcome this is to conduct multiple experiments, and take an average of
the results that each such experiment generates. This dataset of averages is often normally
distributed, so error bounds can be looked up (or calculated) from the normal distribution.
The trouble is we only have data from 1 experiment:

D = 〈X1, X2, X3, . . . , XN〉

With bootstrapping, we can guestimate the error bounds by “simulating” multiple ex-
periments, and then seeing what fraction of such experiments falls within a certain distance
of our calculated mean.

We define a function sample, which returns a list of N elements, where each element is
randomly chosen from D (with replacement; some elements from D may be selected more
than once). We then create another list S where each entry is: mean(sample(D)). This in
essence gives us the dataset of averages we lacked.

One way to use S is to view it as the histogram of where the mean shows up in various
sampling “experiments”. Using this histogram, we can note which range includes middle
95% of the data. Out of 20 future experiments, 19 will fall into the same range—assuming
our original D was not outrageously “special”.

This setup can be applied to other measurables—not just mean.

2 Permutation tests

Using a similar idea to Bootstraping, we can determine if there is a significant difference
between two (or more) datasets. Often, the datasets in question refer to some experiment
we are conducting: the control group, and the treatment group.
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For example, suppose we wish to test if a vaccine works to prevent covid-19. We take
N volunteers, inject random half of them with our vaccine, and the rest with a placebo.
Nobody except a database knows who is getting the vaccine and who is getting the placebo.
Over the following few weeks/months, we monitor all the test subjects—and note if they
test positive for covid-19.

If the vaccine is very effective, we expect the positive counts for vaccinated population to
be low, or zero. Similarly, if the vaccine is not effective at all, we would expect the positive
counts for both populations to be more or less the same—any differences in results to be
caused by chance.

With a permutation test, we rank the results we got to the “pure chance” results we
generate by shuffling the “test positive” label and recording the rates per population.

3 German tank problem

Suppose we observe tank serial numbers: 19, 40, 42 and 60. How many tanks are there?
Obviously there are at least 60 tanks.

Can there be 120 tanks? If we assume there is nothing special about our observations
(that we didn’t just observe the first few tanks from the assembly line), then for there to be
120 tanks, we would’ve had to observe 4 tanks all below the median of all tanks produced—
that is not impossible, but unlikely.

Can the total be 60 tanks? What are the chances of us randomly observing the exact
last tank produced?

There are several ways of solving this problem, the approach presented is in the theme
of this lecture: random sampling.

For each tank number T from 1 to 1000 (or some other domain specific range), randomly
pick 4 serial numbers and note the highest H: We treat this as vote from H to T . Repeat
this a sufficient number of times to build up a histogram of T values for each H. Since we
observed 60 as the highest, we look for the median T value for H = 60.

With the above setup, we end up with median around 77, and middle 95% of the his-
togram in range 67 to 96 (in other words, we have a lot of confidense that our estimate is
likely ok).

4 Doomsday argument

The above solution to the German tank problem can be applied in simpler scenarios: we
find a widget with serial number 100, with 90% confidence, what’s the maximum number of
widgets?

We can perform a similar sampling experiment, but this problem is much simpler—reverse
the perspective: we find a widget with serial number “100”. If we are not particularly lucky,
than this “100” is in the middle 90% of all the widget serial numbers, which leads to:

• if 100 is the 95th percentile, then there are a total of around 106 widgets.
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• if 100 is the 5th percentile, then there are a total of around 2000 widgets.

Either way, with 90% confidence, the total number of widgets is between 106 and 2000.
If we just want “better than guessing” outcome, we can assume that 100 is in the in-

terquartile range (IQR, the middle 50% of all widget serial numbers). The range gets smaller:
with 50% confidense, we can guestimate number of widgets to be between 133 and 400.

So what’s so “doomsday” about this? If we pretend that every human that is born has a
serial number, we can apply this argument to humanity—we estimate the number of people
that have ever lived, and with any confidense we want, estimate the total number of humans
that will ever live. Some folks go farther and project population growth by years, and come
up with a year the last human will be born.

The numbers vary depending on what estimates we use, and what confidense level we
choose to guestimate at, but the basic idea is that if we assume we are not “special” (that
we are not in the first 0.01% of all human’s history), then humanity’s end is likely nearer
than most folks are comfortable with. e.g. will humanity still exist in a million years? How
about in 100k years?
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