
1 Java

Java is just another programming language, that’s similar to C/C++ syntax (and C#1).
It is an interpreted language that has been applied to a variety of domains—such as client
side programming via Applets and Swing applications, and server side via Java Enterprise
Edition.

Java still remains relatively popular for database/server type applications. Many would
argue that the glory days of Java on the client side (Applets/Applications) is long gone...

1.1 Installation

If you’re using Windows, you probably already have a way to execute Java programs.
It is called the JavaVM, and is usually included with Internet Explorer. If you want
to compile programs though, you need to download the Java SDK. You can find it at
http://java.sun.com.

After you install the SDK, you should setup your $JAVA HOME and $PATH variables. The
$JAVA HOME needs to point to the directory where you installed the SDK, typically something
like c:\j2sdk, and $PATH should point to the ‘bin’ directory, typically c:\j2sdk\bin

2 JDBC

Java uses JDBC2 to access databases of various sorts. It is a portable database interface:
all databases do the same things anyway in the same way—so why not create a library that
abstracts minor differences between databases?

In this document, we will develop a web-site using JSP, using Microsoft Access at first,
and then quickly (without hassle) switch to using Oracle.

3 JSP

JSP stands for Java Server Pages. It is a form of a Servlet. A Servlet is a piece of Java code
that is setup to process requests (ie: it acts like a server—but not a full fledged server3.)

JSP is sort of like ASP, or PHP, only it uses Java.

3.1 Installation: Tomcat

You need a “Servlet Container” in order to run (& develop) Servlets and JSP pages. There
are many such “containers”. The first (developed by Sun) and most standard one (and
generally relatively fast) is Tomcat. Now managed by the Apache Group; i.e.: you can
download it for free from http://www.apache.org/. It is a sub-project of “Jakarta” (so

1C# came after Java.
2Which does not stand for Java Database Connectivity—in a similar way as ODBC does stand for Open

Database Connectivity
3Well, you can implement full fledged servers of all kinds using the Servlet API

1

click on Jakarta link). After downloading the binary distribution (get Tomcat version 5),
you unzip it into something like: C:\jakarta-tomcat.

To start Tomcat, you run: C:\jakarta-tomcat\startup, and to stop it, you run:
C:\jakarta-tomcat\shutdown. There are other ways of starting it up (you can even have
it run as a Windows service); you can read up on various configuration options in the
documentation, which (now that you’ve installed it and it’s running), can be found on
http://localhost:8080/tomcat-docs/ or alternatively on the Jakarta website.

4 Microsoft Access

Yes!, you read it right. Microsoft Access. Why are we studying it? Because it’s always
there... and sometimes it’s sorta useful as a quick proof-of-concept thing. Anyway, don’t
worry if you don’t have Microsoft Access... since you already have it: it’s built into Windows.

In Windows: go to your control panel (maybe also “Advanced Tools”) and then double
click on “Data Sources (ODBC)”. This is a central Windows thing that allows you to con-
figure ODBC interfaces. Once there, pick the “System DSN” tab, and click “Add...” From
the list of drivers that come up, select “Microsoft Access Driver (*.mdb)” and click “Finish”
button.

Click on the “Create” button to crate a new database; and place it some directory like
C:\Temp. Name it gbookdsn, and give it any description you like. Click ok, etc., and
congratulations, you’ve just setup a Microsoft Access database!

4.1 Adding Tables, etc.

If you have Microsoft Access, just double click on the database file you’ve created, and
add tables via the usual Microsoft Access GUI interface. On the other hand, if you’re a
bit under-funded, and haven’t purchased a copy of Microsoft Access, then here’s what you
can do (besides “borrowing” a copy): download dbconnect.zip4, then open the file, read
the comments, setup appropriate DSN and just connect. Basically this is a client program
that gives you a cheap version of the MySQL console, except it’s for Microsoft Access (well,
technically any ODBC capable database).

Whichever way you do it, you can create the table such as (you can just type it into that
dbconnect.zip tool linked above):

--- this is for Microsoft Access

CREATE TABLE GBOOK (

GBOOKID COUNTER,

NAME VARCHAR(64),

EMAIL VARCHAR(64),

POSTDATE DATETIME,

MESSAGE TEXT,

PRIMARY KEY(GBOOKID)

);

4http://www.theparticle.com/files/programs/util/dbconnect.zip

2

5 Architecture

Just as before, we will break up the whole application into components, so that changing
things is relatively easy. For example, for our GuestBook, we will have a “value” class such
as:

package gbook;

import java.util.*;

public class GBook {

public int gbookid;

public String name;

public String email;

public String message;

public Date postdate;

}

Obviously we could’ve made it nice, etc., but I’m a bit in a rush to get these notes typed up
before the class.

5.1 Database Utility Class

Also, just as in our previous notes, we will put the database code into a separate class, in
this case, named DbHelper. The source code is roughly5:

package gbook;

import java.sql.*;

import java.util.*;

public class DbHelper {

// gets a db connection

public static Connection getConnection() throws SQLException {

Connection conn = null;

try{

// Microsoft Access PART

// load db driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver").newInstance();

// connect with a Data Source Name (DSN) of a database.

conn = DriverManager.getConnection("jdbc:odbc:gbookdsn");

}catch(ClassNotFoundException e){

e.printStackTrace();

}catch(InstantiationException e){

5The actual source code contains comments on how to get Oracle to work.

3

e.printStackTrace();

}catch(IllegalAccessException e){

e.printStackTrace();

}

return conn;

}

//add a guestbook record.

public static void addGuestBook(GBook o){

try{

Connection connection = DbHelper.getConnection();

Statement statement = connection.createStatement();

// Microsoft Access INSERT

String command = "INSERT INTO GBOOK" +

"(NAME,EMAIL,POSTDATE,MESSAGE) VALUES (’"+o.name+"’,"+

"’"+o.email+"’,NOW(),’"+o.message+"’)";

statement.execute(command);

statement.close();

connection.close();

}catch(SQLException e){

e.printStackTrace();

}

}

// get all guest book entries

public static Vector getGuestBook(){

Vector v = new Vector();

try{

Connection connection = getConnection();

Statement statement = connection.createStatement();

// Microsoft Access INSERT

String command = "SELECT * FROM GBOOK ORDER BY POSTDATE DESC";

if(statement.execute(command)){

ResultSet rs = statement.getResultSet();

while(rs.next()) {

GBook g = new GBook();

g.gbookid = rs.getInt("GBOOKID");

g.name = rs.getString("NAME");

g.email = rs.getString("EMAIL");

g.message = rs.getString("MESSAGE");

4

g.postdate = rs.getDate("POSTDATE");

v.addElement(g);

}

}

statement.close();

connection.close();

}catch(SQLException e){

e.printStackTrace();

}

return v;

}

}

6 JSP Guest Book

The JSP code is pretty much a word-for-word translation of the PHP guest book you’ve
already seen:

<%@ page import="gbook.GBook,gbook.DbHelper"%>

<html>

<head>

<title>Guest Book!</title>

<meta HTTP-EQUIV="Pragma" content="no-cache">

<meta HTTP-EQUIV="Cache-Control" content="no-cache">

</head>

<body>

<center>

<h3>Welcome to the Guest Book Page!</h3>

<p>[donwload source code]</p>

<%

java.util.Enumeration enum = DbHelper.getGuestBook().elements();

if(enum.hasMoreElements()){

%><table border="1" width="60%"

bgcolor="#DDDDDD"

cellspacing="1" cellpadding="5">

<%

while (enum.hasMoreElements()){

GBook g = (GBook)enum.nextElement();

%><tr>

<td width="20%" bgcolor="#EEEEEE"

valign="top">

<nobr><%=g.name%></nobr>

<small><%=g.email%></small>

5

<small><%=g.postdate%></small>

</td>

<td width="80%" bgcolor="#EEEEEE"

valign="top">

<%=g.message%>

</td>

</tr><%

}

%></table><%

}else{

%><h3 style="color:red">Sorry,

database Error.</h3><%

}

%>

<p> </p>

<h3>Sign this Guest Book!</h3>

<form action="index_action.jsp" method="POST">

<table border="0" width="40%" bgcolor="#DDDDDD">

<tr>

<td style="width:10%" align="right">Name:</td>

<td style="width:90%">

<input type="text" name="name" style="width:100%">

</td>

</tr>

<tr>

<td style="width:10%" align="right">

<nobr>E-Mail:</nobr>

</td>

<td style="width:90%">

<input type="text" name="email" style="width:100%">

</td>

</tr>

<tr>

<td style="width:100%" colspan="2">

<textarea cols="60" rows="6"

style="width:100%" name="message"></textarea>

</td>

</tr>

<tr>

<td style="width:100%" colspan="2" align="right">

<input type="submit" value="Sign!">

</td>

</tr>

6

</table>

</form>

<p> </p>

<p>© 2004, CIS45</p>

</center>

</body>

</html>

Notice that right now we use the <% and %> instead of the PHP ones (and also that we have
Java instead of PHP code).

Another important thing to notice is that our JSP code has no database code at all. All
we do is display results we got from some other class. There is a way to make this even
cleaner using JSP tag libraries (i.e.: not have any Java code at all, just special tags that do
all these things), but we don’t have time to go into that. Tomcat documentation (which you
should already have installed) has everything you need to build tag libraries yourself.

The submission code (the “action”) is just:

<%@ page import="gbook.GBook,gbook.DbHelper"%><%

GBook g = new GBook();

g.name = request.getParameter("name");

g.email = request.getParameter("email");

g.message = request.getParameter("message");

DbHelper.addGuestBook(g);

response.sendRedirect("index.jsp");

%>

Note that it doesn’t do any error checking, etc., and in fact has a very serious bug6, which
we will discuss when we deal with security a bit later in the course.

7 Setting it up

To get the sample application working, you need to place it in the webapps7 directory, and
then point your web-browser (after starting Tomcat of course) to http://localhost:8080/gbook/

8 Oracle

You don’t need much to get it to run under Oracle. You already have most of the code.
From the Oracle installation directory, you need to copy the JDBC “thin” drivers, and place
them in the /WEB-INF/lib directory, as a JAR file8.

You then need to change the connection code in DbHelper, to that of Oracle:

6What happens when someone enters a quotation character as part of their name or message?
7You’d have: C:\jakarta-tomcat\webapps\gbook or something similar.
8You may need to rename it to .jar, since it is likely a .zip

7

String driverName = "oracle.jdbc.driver.OracleDriver";

Class.forName(driverName).newInstance();

// Create a connection to the database

String serverName = "hostname";

String portNumber = "1521";

String sid = "sid_oracle_instance";

String url = "jdbc:oracle:thin:@" + serverName +

":" + portNumber + ":" + sid;

String username = "user";

String password = "password";

conn = java.sql.DriverManager.getConnection(url,username,password);

conn.setAutoCommit(true);

Basically what the above does is use the Oracle “thin” driver9 to connect to a an Oracle
instance running on a certain machine on a certain port, using a certain username, and
certain password.

The “AutoCommit” part is so that if you disconnect without calling “commit”, all your
things don’t get lost, but get auto-committed. By default, if you forget to “commit” every-
thing that you’ve done would get un-done.

8.1 AutoNumber Issue

One of the tougher porting issues involves the fact that Oracle doesn’t have AUTO_INCREMENT
(like MySQL) nor does it have an IDENTITY (like Microsoft SQL Server), and it doesn’t have
COUNTER (like Microsoft Access10). What Oracle does have is “Sequences”11).

A sequence is like an incrementing variable that’s maintained by the database. It can be
used by stored procedures, returned, queried, etc. To create a sequence, you do:

CREATE SEQUENCE gbook_sequence ;

After that, you can select from it via a plain regular select statement:

SELECT gbook_sequence.NEXTVAL FROM DUAL

The above just gets a new sequence value (well, the “next” value). You can also get the
current value:

SELECT gbook_sequence.CURRVAL FROM DUAL

Anyway, what all this means is that you need to use this sequence value whenever you’re
inserting records. So for example, instead of our usual insert statement, you’d actually do
something like:

9There are 2 types of drivers: the “thin” and the non-thin OCI driver. If you need high performance and
don’t mind installing an Oracle client driver on the user’s machine, then you can use the OCI driver.

10I don’t know why Microsoft Access doesn’t support the same SQL instructions as SQL Server—seems
kind of stupid to have two different standards at a single company.

11Because of this, you have to use a slightly different table definition—the one that doesn’t include ‘auto
numbers’.

8

INSERT INTO

GBOOK (GBOOKID,NAME,EMAIL,POSTDATE,MESSAGE) VALUES (

gbook_sequence.CURRVAL,

’John Doe’,

’jdoe@yahoo.com’,

SYSDATE,

’And this is a message!’

);

Also notice that we use SYSDATE instead of the ‘usual’ NOW().

9 Conclusion

And basically that’s it. Once you write an application, changing the database shouldn’t be
too hard. Even between vastly different databases, like Microsoft Access and Oracle.

9

