1 PROBABILITIES

1 Probabilities

Probability is a tricky word—usually meaning the likelyhood of something occuring—or how
frequent something is. Obviously, if something happens frequently, then its probability of
happening is high.

1.1 Basics

Probabilities always involve three things: a random variable X, an alphabet A, and the
corresponding probabilities P,. In this setup, X takes on values x € A, with probability P,.
Probabilities of subsets are just sums of the individual elements of the subsets; if T' C A,
then

P(T)=PxzeT)= Z P(x = a;)

When more than one variable are involved, we have a joint probability. For two variables,
we may write P(z,y). For five, we may write P(a,b,c,d,e).

For example, for a single die', the alphabet is {1,2, 3,4, 5,6}, since any single throw can
land on some number 1 through 6. Consider throwing two die, the outcomes may be:

2 = {1,1}

= {1,2} or {2,1}

= {1,3} or {2,2} or {3,1}

= {1,4} or {2,3} or {3,2} or {4,1}

= {1,5} or {2,4} or {3,3} or {4,2} or {5,1}

= {1,6} or {2,5} or {3,4} or {4,3} or {5,2} or {6,1}

= {2,6} or {3,5} or {4,4} or {5,3} or {6,2}
9 = {3,6} or {4,5} or {5,4} or {6,3}

10 = {4,6} or {5,5} or {6,4}

11 {5,6} or {6,5}

12 = {6,6}

OO O i W

That’s 36 outcomes, each having 1 in 36 chance of occuring. For example, if you throw two
dice, your chances of getting a “2”, or P(2) are 1/36. Your chances of getting “11”, or P(11)
are 2/36 (since there are two subsets that add up to 11, namely, {5,6} and {6,5}). What
about P(7)? We can get that any number of ways:

{1,6} or {2,5} or {3,4} or {4,3} or {5,2} or {6,1}

There are six ways of getting a “7”. Each one of those has a 1/36 chance of coming up, thus
P(7) =6/36.

What are the chances of us throwing a “7” where one of the die comes up as “1”?7 Here
are the outcomes when at least one die is a 1:

{1,1},{1,2},{1,3},{1,4},{1,5},{1,6},{2,1},{3,1},{4,1}, {5, 1}, {6, 1}

ISmall cube with a number on each side.

1.1 Basics 1 PROBABILITIES

That makes 11/36. We already know that chance of getting a “7” is 6/36. To add the
probabilities gets us:
P(at least one die is 1) + P(7) = 11/36 + 6/36 = 17/36

But we counted some of them twice! {1,6} and {6, 1} show up for both P(at least one die is 1)
and P(7), so we must subtract them... So the end result is:

P(at least one die is 1) + P(7) — P({1,6} or {6,1}) = 11/36 + 6/36 — 2/36 = 15/36
To put that into set nation:

P(AUB)=P(A)+ P(B)—-P(ANDB)
We obtain a marginal probability P(z) from a joint probability P(z,y) via summation:
P(z) =) P(z,y)
yeAy

This is often called marginalization, or summing out. For example, we can find the proba-
bilities for a single die by summing out the 2nd die from example above.

Events tend to occur one after the other. Probability of z given y is called conditional
probability, and is written P(z|y). This is just a ratio:

P(z,y)

P(y)

Rewriting conditional probability gives us the product rule:
P(z,y) = P(zly)P(y) or Plx,y) = Pylz)P(x)

If z and y are independent (have no influence on each other’s occurrence), the product rule
becomes:

P(zly) =

P(z,y) = P(z)P(y)
A practical note on the product rule is that often we don’t need to compute actual products

of probabilities, but can work with sums of logarithms.
A variation on the product rule and marginalization gives us conditioning:

P(z)= > P(zly)P(y)
yEAy

Simiarly, we can get a joint probability from conditional probabilities via the chain rule:
P(z) = [[P(wilar, ... zi0)
i=1

In other words (writing out the above [loop), we get:
P(a,b) = P(alb)P(b)
P(a,b,c) = P(alb,c)P(blc)P(c)
P(a,b,c,d) = P(alb,c,d)P(b|c,d)P(c|d)P(d)

and so on.

1.2 Bayes’ theorem 1 PROBABILITIES

1.2 Bayes’ theorem

Thomas Bayes (1702-1761) gave rise to a new form of statistical reasoning—the inversion of
probabilities. We can view it as

Posterior = Prior x Likelihood

where Posterior is the probability that the hypothesis is true given the evidence. Prior is the

probability that the hypothesis was true before the evidense (ie: an assumption). Likelihood

is the probability of obtaining the observed evidense given that the hypothesis is true.
Bayes’ rule is derived from the product rule, by noting:

P(y|x)P(x)
P(y)

It is worth thinking about this a bit. For example, P(z,y) is a joint distribution. We can
visualize it as a matrix, with all values of x being rows, and all values of y being columns.
All entries in that matrix sum to exactly 1.

If we wanted a matrix where each row sums to 1, then we would normalize by row—we
would sum each row and divide each element of that row by that sum. Well, by marginal-
ization we get P(x) which is that sum by row, and the matrix where each row sums to 1 is
P(,y)/P(x).

What this really means is there’s now a two step process. First, we pick a row, with prob-
ability P(x), then within this row we pick an appropriate y with probability P(z,y)/P(x),
or to rewrite the same thing:

P(z|ly)P(y) = P(y|z)P(x) which leads to: P(zly) =

Pz, y)
P(x)
Now the magic: before any observations, the probability of any particular row is P(z),
we call it the prior probability.
Let us say we observed a particular y, what is the probability of P(x) after this observa-
tion? Well, it is obviously P(z|y), but all we have is:

Pllo) = 5

Pretend we wanted to get back to the joint distribution P(x,y), we would multiply
P(z,y) = P(y|z) * P(x)

Then to calculate P(z|y). We would divide P(x,y) or P(y|z) * P(x) by P(y). Note that
we don’t actually need this last step—since we know probabilities sum to 1, we can just
calculate P(y|z) x P(z), and then normalize the columns (not rows), and we’'d get P(z|y),
which is a process that first picks a column (values of y), and then within that column picks
a value of x with probability P(z|y).

Once we know the probability P(z|y) of picking a particular value of y (the event ob-
servation), we can replace P(z), our prior, with the newly calculated P(x|y), so next time
we apply this rule again, we would be working with the new prior P(z), that is adjusted for
observing y.

P(ylr) =

2 NAIVE BAYES CLASSIFIER

2 Naive Bayes Classifier

We can use the Bayes rule to do document classification—commonly used to classify emails
into spam/nospam categories. For this to work, we need (either assumed, or calculated)
prior probabilities of certain word occuring in a certain document category, ie:

where w; is some word, and C' is some document category (ie: spam, nospam, etc.). The
probability of a given document D given a certain document category is:

P(D|C) = ILP(w;|C)

note that none of the probabilities can be zero, otherwise the whole thing is zero. In practice,
this is usually accomplished by specifying a very small number as the minimum probability
(even if the word doesn’t exist in a particular category).

Now we do the Bayes thing:

P(D|C)P(C)
P(C|D) =
c1p) = 5
Both P(D|C) and P(C) can be easily estimated from the training data (just count words
by category). We never have to estimate P(D) as it’s only normalizing the results (making
probabilities sum to 1)—which we don’t need to determine which category is more likely.

2.1 Markov Processes & Chains

A Markov process M = (2, T', k) is a random variable, where € is the set of all possible
values, or state space, I' is a transition matrix, I';; is the probability of going from state ¢ to
state 7, and k is the starting state.

A Markov chain is a sequence of states, such as: X7, Xs, X3,..., generated by a Markov
process. Markov chains have the obvious Markov property that the future and past states
are independent given the current state (the next state only depends on the current state),
that is:

P(Xo1 =2|X, =2,,..., X1 =11) = P(Xoy1 = 2| X, = x,)

We can find the probability of being in any given state after IV steps simply by iterating
N times. This turns out to be relatively easy: P = kI'V where T' is raised to Nth power,
and is multiplied by k, the starting state probability distribution (distribution with all states
set to zero except one, the starting state).

Depending on some properties® of the chain, it may reach a stationary distribution (after
iterating for a while), that is independent of starting values.

2Trreducible: one can go from any state to any other state, even if it takes more than one step. Aperiodic:
the chain is not forced into cycles.

2.2 Hidden Markov Model 2 NAIVE BAYES CLASSIFIER

2.2 Hidden Markov Model

A Hidden Markov Model (HMM) is similar to a Markov Chain, except the states are not
observable (i.e.: they are hidden). What is observable are ‘output symbols’, which are
generated (via a certain probability) by the hidden states. A sequence of hidden state
transitions generates an observed output sequence.

Imagine you’re a guard in an underground facility, where you don’t know what the
weather is, but you can see folks carrying umbrellas. However, just because you observe
someone carrying an umbrella does not mean it is raining outside.

The general problem is to find the most likely state sequence (which cannot be observed)
given the observed output sequence. This problem is solved via the Viterbi algorithm.

2.3 Bayesian Networks

Given a probability distribution, say P(a,b,c,d, e, f,g) we can calculate probability of any-
thing we feel is useful. For example, if we wanted to know what is the probability of P(a, ¢, g)
we can just sum over the other variables. Similarly if some variables have definite values,
e.g.. Pla=true,c, f = false,g).

Note that the a, b, c,d etc above can be all the everyday things. For example, a may be
“fire alarm goes off”, b may be “someone calls the fire department”, ¢ may be “all phones
are dead”, d may be “alarm clock goes oft” and d may be “alarm clock gets confused with
fire alarm”, and so on. Useful stuff!

In other words, having a probability distribution and the ability to extract information
from it is incredibly useful. The major problem is that marginalization (summing out) is
terribly expensive to do: it is an exponential operation. To go from P(a,b,c) to P(a,b) we
need to sum over all the possible values of c—and this adds up to impractical very quickly.

Recall joint probability distributions rewritten as conditional probabilities:

P(a,b) = P(a|b)P(b)
P(a,b,c) = P(alb,c)P(blc)P(c)

Now imagine that we knew that a was not depenent on b, c. For example, “fire alarm goes
oftf” is independent of “alarm clock goes off”. The above then could be rewritten as:

P(a,b) = P(a)P(b)
P(a,b,c) = P(a)P(blc)P(c)

This is suddenly much simpler to deal with—in terms of maginalization.

Bayesian Networks then is a method to write a probability distribution that explicitly
specifies conditional independence. In a joint probability, everything is assumed to be de-
pendent on everything else—in Bayesian networks we are explicitly saying that some things
have nothing to do with each other.

Practically speaking, in the worst case, dealing with Bayesian networks is still exponen-
tial. We can remove some dependencies, but the ones that are left are still going to cause
exponential calculations.

2.4 Monte Carlo Methods 2 NAIVE BAYES CLASSIFIER

Folks have came up with various sampling algorithms to poke at the exponential search
space and make predictions—without actually going through the entire search space. If
curious, search for message passing algorithms.

The above just deals with evaluating a bayesian network, but not with actually coming
up with one. The simplest way of coming up with one is to ask an expert to draw it (and
specify probabilities). This is similar to having an expert specify rules of an expert system.

As a fallback, the expert can specify the structure, and the probabilities can be learned
from data (perhaps using bayes rule for learning, or maybe just finding aggregates in the
dataset).

If we don’t have an expert to specify a bayesian network, and we need to learn both the
structure and probabilities from data, the task becomes... hard. There are many folks doing
research into this, but so far, for any interesting size problem, the task is impractical. The
main problem is that it is very hard to claim independence with only a finite number of
input samples.

There does appear to be a stupidly silly workaround: if the training dataset is big, say
100 gigabytes, with say 1000 variables (this is currently very impractical by the best of the
best bayesian network learning approaches), why not... instead of learning the bayesian
network and then calculate probabilities from it... just run through the dataset? We can
answer ANY statistics question on this dataset by scanning through it once and maintaining
aggregates. If we need to answer another question, just scan through the dataset again—
sure beats spending an exponential amount of time learning a bayesian network, and then
spending an equally exponential amount of time evaluating (even via sampling) the learned
network.

2.4 Monte Carlo Methods

Monte Carlo integration is an algorithm that relies on random sampling to compute an
integral, possibly of a very complicated multidimensional function. This is accomplished by
generating samples within the integral and then averaging them together (weighted average,
via probability). The major problem, of course, is how to sample an arbitrary probability
distribution. Given any integral:)

/ h(z)dx

If we can decompose h(x) into function f(z) and a probability distribution p(x) defined over
an interval (a,b), then we have:

N

[1we = [s = B) = 13 s

i=1

As a simple example, we can use this technique to estimate area under a quarter circle, and

2.4 Monte Carlo Methods 2 NAIVE BAYES CLASSIFIER

with that, get an estimate for value of :

T A i ZN: { 1 lf x%andom + y?andom S 1
N = 0 otherwise
where T andom and Yrandom are random numbers from 0 to 1, generated on every loop. The
bigger N is (more samples in the integral), the more accurate the estimate for m. Now,
consider marginalization:
P(z) =) P(zly)P(y)
yEAy

What if instead of going through all the values of A,, we randomly sample them? This is
the gist of a Monte Carlo method.

Often, the distribution we wish to sample is very complex and has many dimensions. The
Markov Chain Monte Carlo method [?, ?] constructs a Markov Chain (Section ?7) whose
stationary distribution is the distribution we wish to sample. The sampling process then
just has to walk the chain for a long enough time to produce accurate samples.

A popular MCMC algorithm is a special case of Metropolis-Hastings, called Gibbs sam-
pling. If we have random variables X, and Y, and wish to sample f(x), but only have f(z|y)
and f(y|z), we can generate a Gibbs sequence via:

Xj <:sam;lf)le f(x‘Y; = yJ)
Y;'Jrl <:sample f(y|XJ = xj)

where vy is specified (or guessed); remainder of the sequence:
XO; Yia Xl; Yéa X27 s

is generated by iteratively applying the above rules. Such a rule can easily be generalized to
more than two random variables:

Xj < sample f(l"Y} =Yy, Zj = Zj)
Y}+1 < sample f(y|XJ = xj, Zj = Zj)
Zj+1 < sample f(Z‘XJ = xj, Y}—&-l = yj—H)

In the above case, the initial values for yy and zy are specified, etc.

Gibbs sampling sits at the core of most efficient (practical) methods involving Bayesian
inference. Applications for the above are mostly simulations to compute some value that
doesn’t have a closed form, such as valuation of equity indexed annuities [?], or computing
the credit score [?].

